Closed nominal rewriting and efficiently computable nominal algebra equality
نویسندگان
چکیده
We analyse the relationship between nominal algebra and nominal rewriting, giving a new and concise presentation of equational deduction in nominal theories. With some new results, we characterise a subclass of equational theories for which nominal rewriting provides a complete procedure to check nominal algebra equality. This subclass includes specifications of lambda-calculus and first-order logic.
منابع مشابه
Closed nominal rewriting and efficiently computable nominal
We analyse the relationship between nominal algebra and nominal rewriting, giving a new and concise presentation of equational deduction in nominal theories. With some new results, we characterise a subclass of equational theories for which nominal rewriting provides a complete and efficient procedure to check nominal algebra equality. This subclass includes specifications of lambda-calculus an...
متن کاملA Nominal Axiomatization of the Lambda Calculus
The lambda calculus is fundamental in computer science. It resists an algebraic treatment because of capture-avoidance sideconditions. Nominal algebra is a logic of equality designed for specifications involving binding. We axiomatize the lambda calculus using nominal algebra, demonstrate how proofs with these axioms reflect the informal arguments on syntax and we prove the axioms to be sound a...
متن کاملNominal Algebra and the HSP Theorem
Nominal algebra is a logic of equality developed to reason algebraically in the presence of binding. In previous work it has been shown how nominal algebra can be used to specify and reason algebraically about systems with binding, such as first-order logic, the lambda-calculus, or process calculi. Nominal algebra has a semantics in nominal sets (sets with a finitely-supported permutation actio...
متن کاملTerm Equational Rewrite Systems and Logics
We introduce an abstract general notion of system of equations and rewrites between terms, called Term Equational Rewrite System (TERS), and develop a sound logical deduction system, called Term Equational Rewrite Logic (TERL), to reason about equality and rewriting. Further, we give an analysis of algebraic free constructions which together with an internal completeness result may be used to s...
متن کاملUnity in nominal equational reasoning: The algebra of equality on nominal sets
There are currently no fewer than four dedicated logics for equality reasoning over nominal sets: nominal algebra, nominal equational logic, nominal equational logic with equality only, and permissive-nominal algebra. In this survey and research paper we present these logics side-by-side in a common notation, survey their similarities and differences, discuss their proofand model-theories, and ...
متن کامل